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THE ELASTIC MODULI OF HETEROGENEOUS MATERI! LS

by

Zvi Hashixf'

1. INTRODUCTION

The present work is concerned with the determination, by theoretical

analysis, of the elastic moduli of a randomly heterogeneous material.

It is assumed that the material may be adequately described by an

elastic, homogeneous and isotropic matrix the moduli of which a;e known,

in which particles of another elastic homogeneous and isotropic material

are imbedded, the moduli of which are also given. Assuming furthermore

that the volume concentration of particles is uniform and that the material

may accordingly be regarded as quasi-homogeneous the problem is to find

expressions for the effective elastic moduli of this heterogeneous material.

Numerous papers on the determination of bulk properties of

heterogeneous materials have been published. The first of these was by

Einstein (1906, 1911) in which the viscosity of a suspersion was determined,

assuming that it may be described by rigid spheres suspended in a viscous

fluid and that the volume concentration is so small that particles do not

interact. The case of dilute concentration, assuming that the particles are

spherical, has been solved for a variety of materiaLs: Liquid droplets in

another liquid, Taylor (1932); Elastic particles in '.scous fluid; Froehlich

and Sack (1946); Empty holes in elastic solid, Mackenzie (1950); Rigid

particles in elastic solid, Hashin (1955); Elastic p.rti4les in another elastic

materi, Eshelby (1957), Hashin (1958); Viscous liquid' inclusions in elastic

solid, Oldroyd (1956). Methods .of analysis for small concentration have

been recently applied br Buediansky, Hashin and Sanders (1960) to the

+Associate Professor of Engipaering Mechanics, University of Pennsylvania'.

Formerly, Research Fellow in Structural Meehanics, Harvard University.
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theoretical determination of the .arly plastic behavior of polycrystalline

materials.

In the case of small voli_,rns concentration the fundamental assumption

is that particles do not interact. 'The effective moduli can then be determined

in a way outlined below (Section 2).

The problem of finite concentration is much more complicated. There

is at present little hope of rigorously solving the problem of a medium in

which there are many interacting Inclusions, The dIfficulty of this kind of

problemn is well illustrated by Sternberg' s and Sadowsky' s (1952) solution of

the axisymmetric problem of the theory of elasticity containing only two

spherical cavities, [See also Miyamoto (1956).]

Most of the work which has been done up to now in the field of finite

concentration has been concerned with the extension of Einstein' s formula,

previously mentfoned, to higher concentrations. This has resulted in a large

number of different formulae which are sometimes in direct contradiction.

Up to now no formula has been derived which is theoretically well founded

and fits experimental results for the whole range of volume concentration.

A review of these investigations is not within the seope of this paper.

Summaries of these nmky be found in Frisch and Simha (1956) and Reiner (1958).

Instead of an attempt to find an exact formula for the moduli of a

heterogeneous body this work will be concerned with the construction of

approximate upper and l'we: bounds for the moduli. Obviously such bounds are

of practical value only if tney are close together. It will be found that the

expressions for th.• bulk modulus bounds coincide. In the case of the shear

modulus they are mostly close together, as is illustrated by a specific case

which has been solved numerically in this paper. Also a simple expression
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is derived, which is always smaller than the upper bound and larger than

the lower one and can thus be used as a good approximation to the shear

modulus whenover the bounds are close°,

Apparently the first bounds on an elastic modulus of a heterogeneous

material have been given ir. a recent paper by Paul (1959). Bounds for the

Young' s modulus of a heterogeneous material were obtained by using the

variational theorems of the theory of elasticity and taking as an admissible

stress system (see Section 2) the same simple tension in matrix and particles

and a simple tension deformation for an admissible displamement field. While

these bounds have the advantage of being exact they are far apart because of

the simple admissible stress and displacement fields chosen. Thus for

example for the same material, for which a numerical solution has been

given in this paper, [experimental results for this case have been obtained

by Nishimatsu and Gurland (1959) and will be given belowJ Paul found that

for a concentration of 50 per cent, the upper bound for Young' s modulus

was 43 per cent higher than the lower bound.

In the following general expressions for the elastic moduli of a quasi-

homogeneous heterogeneous material will be developed, involving only the

stresses or strains inside the particles. This is done by considering the

change in strain energy in a loaded homogeneous body due to the Insertion

of non-homogeneities.

It is then shown that bounds for the moduli can be obtained by suitable

choice of admissible str- eie•fs° In order to evaluate the

bounds approximately two geometrical approximations are made. It is

assumed, as in small -concentration theory, that the particles are spherical

and moreover that the action of the whole heterogeneous material on any one
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particle is transmitted through a spherical shell which lies wholly in the

matrix,

It is believed that this approximation is a close one and comparison

of theoretical and experimental results strengthens this belief.

2. GENERAL THEORY

Let an elastic homogeneous and isotropic body of arbitrary shape

(Fig. la) be subjected to r-zuf!ace tractions which are associated with a

homogeneous stress tensor

(0) = (0)
Ti = j nj (2.1)

i, j = 1, 2, 3 (a repeated subscript
denotes summation)

where T (0) are the components of the surface stress vector
(o)

•'ij constant stresses

nj components of the normal to the outer surface

The strain energy U0 stored in the body is then given by either of

the formulae

(o) (o)u T • •ii dS (.)
(8)(2)

h (o) (o)

where the -.1 and the strai•s are connected by Hooke' s law

(o (o + 2 Gm (2.4)

InI

-- -'" ' "" "-- I II II FII i l I IIII'4 [
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FIG. I HOMOGENEOUS AND NONHOMOGENEOUS BODIES UNDER
SAME SURFACE TRACTIONS

C.



"-5-

In (2.4) Xm, Gm are the Lame constant and shear modulus respectively,

of the material. 6(o) is given by

IE(o) () = E(o) (o C(o) +I(a)

and Sij is the Kronecker delta.

As the strains are homogeneous the elastic displacements ui are

given by

(o) (o)ui Ii Xijx (2.5)

If any stress and strain tensors are split into Isotropic and deviatoric

parts as follows:

LT-

= 3 + 841

(2.6)
"6 -" + efj
ii ý- 3~ j

Hooke' s law assumes the form

a = 3KE s j = 2Ge11  (2.7)

where K = + A G is the bulk modulus and a- = aa.
3

The strain energy density may then be written in the forms:

"w= aI eK•11 =½ +20G eq) (2.8)

2
=1 + (2.9)

9K 2G)

= •-•-- _- - - _ • •29-_K

-- -- I i i •N • ;; i--'m i i; i •.: il •I i ii-

*', -
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If part of the body is replaced by an inclusion of another material,

the elabtic moduli of which are Kp, ),p, Gp (Fig. 1b) and the same surface

tractions are applied, then it has been shown by Eshelby (1951, 1956) that

the difference in elastic energy stored in the two cases is given by
Or T • jiu ) (2.10) 0

""(s)

where S is the surface of the inclusion, Ti and u1 are the stress and

displacement vectors on the surface of the inclusion.

Formula (2.10) is general; it is valid for any inclusion shape and any

boundary tractions.

An alternative useful form for (2.10) has been given by Eshelby, this is:
Sif(• 11 -Kr) E(O) +2 o)
UT = J (m-Kp) E+ 2 (Gm -Gp.) e1 o eij] dV (2.11)

This may be rewritten in terms of stresses by using (2.7)

ý )f + Gm sG ) s•)is dV (2.12)(-= ) LgK op 2 GmGp

where V is the volume of the inclusion. Again (2.11) is a special case of

Eshelby' s result which is valid for a nonisotropic and nonhomogeneous

inclusion. When instead of surface tractions, surface displacements are

prescribed formulae (2.10), (2.11) and (2.12) change in sign. If JU when

displacements are prescribed, is denoted by • U(N) then Eshelby has shown

that:

1 (T) " uT°)) dS (2.13)

(s)
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The derivation of (2.10), (2.11) and (2.12) remains unchanged when

instead of one inclusion an arbitrary number N of them is introduced into

the elastic body and surface tractions are held fixed. (Fig. lc)

Then the contribution of the nth inclusion is:

1 ( ( -(n) -(n) °(0)
Sn) =(Ti u1  - i ) dS (2.14)

(Sn)

and
n=N

(• =2n--• (2.15)

Analogous results hold for (2.11), (2.12) and (2.13). In the followingtreatinent

of the case where tractions are prescribed will be called the stress approach,

when displacements are prescribed - the displacement approach.

The bulk and shear modulus of an elastic body containing a large

number of inclusions of another material will now be given in terms of energy

expressions. It is first assumed that the T °)" are equivalent to Isotropic

tension

T () 1 i-O (2.16)
3

so

(0) (O) = 0 (2.17)

Then from (2.12), for the nth inclusion

nu• I In a' (o) T j (n) dV (2.18)
2 9 KmKp



When instead of isotropic stress, isotropic radial displacement
(o) _ Seo)

ui -- xI is prescribed on the boundary, then from (2.10), (2.11) ;x.-d3

(2.13), and proceeding in an analogous way

>TJ• n -2 tKmK-p) So) (n) dV (2.19)

(Vn)

For the homogeneous body without inclusions

"0 -9 ZK-V (2.20)

If it is assumed that the heterogeneous material is quasi-homogeneous with

bulk modulus K,
2

(G(a)
2 9 (2.21)

where (2.21) may be regarded as a definition of the "effective" modulus.

Then,

n=N

which on using (2.20) and (2.21) may be written as.

• 1 _ = _ _1 + _ , __(_s )
+ KýO (2.23)

18

where 6 U(T) is given by (2.22) and (2.18).

It should be borne in mind that (2.23) is valid only when the actual
-(n) are used in (2.18).

Using now the displacement approach the following expressions

are obtained:



. i, - -, ---.h

'i/UJE) 1 •(°) 2•V (2.24) I

= Km+ su(e)(226

Analogous formulae can be obtained for the shear modulus e. It is

convenient to apply the stress vector field

• _(o)

S(0) = rn(

(o)
IIT 2  = %'n1  (2.2'?)

_(o)
_T = 0

which is equivalent to the state of stress,
o) (0) (o0)

= 0 s 2 S21 (2.2

(o0) (o) (0) (o) (0o) (2.28)S = S2  = S = S3j = 53= 0

which is a pure shear.

Then from (2.12):

Gm -Gm n
"g- Gm Gp S1 n dV (2.29)-- •l-ilGm p (Vn)

Also,
-- uI(T) =2 •

2 Gm V (2.30)

u v (2.31)2 G•
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and using these expressions in (2.22)

- 1 + J (2.32;do GM 2 . V

Proceeding in an analogous way when homogeneous shear displace-

ments are prescribed on the boundary, given by

=) = x ; u = x ; u 0 (2.33)O

the following results are obtained:

(e) 1
U0  = Gm ? V (2.34)

U = Wi G* 2 V (2.35)
2

G* =(Gm + (2.36)
2

where
n=N

n=l

0U(e) = I (Gm - Go) I 3 (n)dV (2.37)

The expressions for the effective moduli depend on the actual stresses

or strains in the inclusions. In the case of small volume concentration, when

it is assumed that there is no interaction, these may be determined by 4

assuming that each inclusion is in an infinite medium where the stresses or

strains at infinity are the ones applied to the surface of the body. Solving

the boundary value problem, fhe expressions for the case of small concentration
i

" '" " " rl~ 1 i
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are easily obtained. This procedure is clearly impossible for finite

concentration. On the other hand bounds on the moduli may be obtained by

using the variational theorems of the theory of elasticity.

The theorems of minimum complementary energy and of minimum

potential energy will be here used in their following special forms:

(a) When tractions are prescribed over the entire surface of an

elastic body and the body forces vanish, then of all sets of stresses, satisfying

the equil4brium conditions and boundary conditions, the actual state of stress

minimizes the strain energy U(q).

(b) When displacements are prescribed over the entire surface of an

elastic body and the body forces vanish, then of all sets of displacements,

satisfying the boundary conditions, the actual displacements minimize the

strain energy U(E). [ c.f., e.g. Sokolnikoff -- Mathematical Theory of

Elasticity (1956).] Thus for the special cases mentioned, both theorems

reduce to a minimum principle for the strain energy.

In what follows a field of stress or displacements belonging to the

sets described in (a) or (b) respectively will be called admissible.

If in the stress approach any admissible state of stress is chosen,

the strain energy associated with it may be computed from (2.12) and (2.22).

If the expression S U thus determined is denoted by S U(•) and U()

is the actual strain energy, then from (2.22) and principle (a):

U(T) U(a) + (2.38)

0

If i:ow in the displacement approach an admissible field of displace-

ments is chosen, the strain energy is computed from (2.11) and (2.22) and

the expression S U(e) is denoted by 6V(E) -- then from principle (b)
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U() U() + () (2.39)

The bounds on the bulk modulus are obtained in the following way:

An admissible state of stress is chosen~so that on the boundary S of the

body shown in Fig. Ic (2.16) is satisfied, and A is determined.

From (2.38), (2.20) and (2.21)

1 1 )

-- V
18

which may be rewritten in the form:

Km %K• • _ K, (2.40)

1+ AU

(o) 2

18 Km

Accordingly K. is a lower bound for K.

The same procedure is now applied to the displacement approach.

Displacements are chosen so that on the boundary

(o) F-(o)ui = T (I 2.41)

Using (2.24), (2.25) and (2.39) the following inequality is obtained

6 (K2 (2.42)
SE(O)' V2.
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Then K *is an upper bound for K•. So from (2.40) and (2.42)

K < K* < K2  (2.43)

Exactly the same method may be used for the shear modulus and it is then

found that

G G * G(2.44)G 1R _< •G 2

where

4 Gm (2.45)

1 +V

2 Gm

G2 = Gm + (2.46)

W2

It should be remembered that S U(-) in (2.40) and (2.45) are different

quantities. The same applies to • in (2.42) and (2.46).

The theoretical treatment presented up to rhis point has been exact,

within the framework of the linear theory of elasticity. In the following some

reasonable assumptions will have to be made.

Consider a body containing a large number of inclusions which are

uniformly distributed in it. (Fig. 2) The body is very large in comparison

to an inclusin. The volume concentration of inclusions is then defined by

n=N

c = (2.47)
V

7j
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FIG. 2 HETEROGENEOUS MATERIAL DIVIDED INTO
COMPOSITE ELEMENTS
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where Vn is the volume of the nth inclusion and V the volume of the whole

body. By uniform concentration the following is understood: when choosing

an arbitrary, not too small, volume element of th'M body the fractional volume

of inclusions in it is expected to deviate from c only by a small amount.
(o)

A system of tractions Ti derived from homogeneous stresses is

now applied to the surface of the body. Each inclusion is then imagined to

be surrounded by a surface Sn, enclosing a volume Vn, so that for every

inclusion

VL c (2.48)
Vn

It is possible to construct these surfaces Sn in an infinity of ways and it

will be assumed that this has been done so as to approach spherical surfaces
as nearly as possible. In the following any element, containing an inclusion

and enclosed by Sn will be called - a composite element. (Fig. 3a)

In order to choose a state of stress T,.. which satisfies equilibrium
13

and boundary conditions it will be assumed that every surface Sn of a

composite element is loaded by the tractions T°)" acting on S. If then the

boundary value problems for the composite elements are solved, the stresses

thus determined fulfil the necessary conditions for an admissible stress

system O-ij. In order to solve the problem it is assumed that the composite

element may be approximated by two concentric spheres so that volumes

are preserved (Fig. 3b). Such an element will be called - a spherical

composite element.

For the displacement approach it is assumed that the surface displace-

ments of S are linear and that the surface displacements of each Sn are of

the same linear form. When the corresponding boundary value problem for



2 / >\Sn

(T ) (b)0)

COMPOSITE ELEMENT SPHERICAL CO'MPOSITE ELEMENT

FIGURE ,3
S4

"Sn bn

VnI

n
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the composite element is solved the resulting field of displacements will

be admissible.

3. APPROXIMATE BOUNDS FOR THE BULK MODULUS

(a) Lower bound by stress approach.

The spherical composite element is given by a sphere of radius bn

concentric with a spherical particle of radius an1 . By definition

a11  3,• f• (3.1)
Vn bn

where

f = c (3.2)

The outer surface S of the heterogeneous body is loaded by a

constant radial stress

o(() -= = ý (3.3)
rr 3

Then the same stress is applied to the spherical surface r = b. On the

following the subscript n will be dropped.)

The elastic moduli of the inclusion are Kp, Gp. Those of the

spherical shell - Km. Gm.

The problem is one of radial symmetry the general solution of

which is [(Love), p. 1421:
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u(P)r A r + •r
r A r+--
I For the inside of the inclusion. (3.4)

p) 3KA 4G-rr = 33~oG -

(m) = Bm
Ur r 1

For the spherical shell. (3.5)
(in) Bm

r 3 KmAm- 4 Gm 3
rr ri

The four unknown constants may easily be determined from the four

boundary conditions:

U(p) 0 (r =0) (3.6)r

(p) (m)
U =Un

r r
(r a) (3.7)

rr rr I

(P) (r =b) (3.8)•rr

From the preceding analysis it follows that only the stresses inside

the inclusion are oi interest. It is found that-

Ap • 4 Gm + 3 Km
AG = 1 (3.9)

33
Km (4 Gm+ 3 Kp) - 4 Gi (Km -Kp)

Bp=0
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Then

rr 3 K•p (3.10)rr

From (2.18), (3.1), (3.2), (3.9) and (3.10)

g(T) _ -2 ' n-K2 4 Gm+ 3 Km
n = 2 Km Km(4Gm+3Kp) - 4 Gm(Km'-Kp) c Vn

(3.11)

From (2.40) and (2.47),
= Km

K m (2.12)
1+ (Km - Kp) (4 Gm+ 3 Km)c

Km(4Gm+3Kp) - 4 Gm(Km- K) c

(b) Upper bound by displacement approach.

It is here assumed thWt the boundary displacement of S is purely

radial

(o) E(o)
I = 3 Xi FX xi (3.13)

Accordingly the displacement applied to the boundary of the spherical

composite element is

U() =Er (3.14)

The boundary value problem is solved exactly as before, the only

difference being in that equation (3.8) has to be replaced by (3.14) for r = b.

It is then found:

LI1M



4 G -+ 3 i(3.15)

4-G +3 Kp+ 3 (Km -Kp),b

B 0 (3.16)

From (2.19), (3.1) and (3.15),
(F8) 4 Gm+3 m

U n 2 E (K P 4 Gm +3 Kp+ 3 (Km -Kp)c (3.17)

and from (2.42) and (2.47)

K* = 1m + (Kp - Km) G (4 Gm+ 3 Km) c (3.18)24 Gm+3 Kp +3 (Km - Kp) c

Comparison of Kr given by (3.12) and K. given by (3.18) shows that the

upper and lower bounds coincide.

4 : K = (3.19)

As the bounds are approximate, this does not necessarily show that the

expression for K'Is exact.

The expression (3.18) can be rewritten in the form

3 (1 -N)m)Kpm- c.
Km

KM -1+ 2(1 / (3.20)
Km ~ 2(2'2•m)+(1+")m) [4 "( ". -1'l

LKm Km

It can also be rearranged into the symmetric form

C = m Km3Km

f + Km Km

Ik



f = 4. . . ..(1
3 Km +m

and V m is the Poisson'.; ratio of the matrix. Generalization to the case

when the particles are of different kinds is obvious. Let thei'e be k kinds

of particles imibedded in the matrix. Let 4 ) be the bulk modulus of the ith

particle kind and ci its volume concentration. Then (3.20) is generalized

to:

i=k

m K

(3.22)
where

i=k

c c

3Km 1+

4. APPROXIMATE BOUNDS FOR THE SHEAR MODULUS

The method is essentially the same as for the bulk modulus. A

homogeneous shear stress or homogeneous shear displacement is applied

to the boundary S and also to the spherical surface Sn of the spherical

composite element. Because of the absence of radial symmetry the boundary

value problem to be solved is much more difficult than that of the preceding

section. Its formulation is as follows:
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Solve the two systems of field equations of the theory of elasticity:

(.kp + E (p) + 2 u(p) =
(?i~p+Gp)E, +p 1  - 0

(4.1)

C(p) u(p)

(Xm+Gm)E ) +Gm;u. = 0
1 (4.2)

(m) (m) 
(

E = Uii

where: i = 1, 2, 3, a comma denotes partial differentiation, a subscript or

superscript p denotes the inclusion, a subscript or superscript m denotes
ti e h e ] , 2 a 2

the shell, 7 x xi denotes Laplace's operator.

The boundary conditions are:

uP). = 0 r =0) (4.3)

i(p) (in)

ui = ui (4.4)

(p) (M) (r =a)

T. Ti (4.5)

TM) = rn2

2T(M) = •ni (r =b) (4.6)

T (M)= 0

Equaticos(4.6) express the condition that pure shear, G;2 = V, is applied

to the boundary in the stress approach. The direction cosines ni are

given, for a spherical surface, by

ni = a (4.7)

I-' ---- -' -"-"i-____ =ir
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In the displacement approach a homogeveous shear displacement

is applied to tie boundary. Then (4.6) is replaced by:

(M) x
U1  2

(M) _ W x (r - b) (4.8)

(M) =0

An exact closed solution in terms of solid spherical harmonics is

given in the appendix to this paper. Proceeding in a way analogous to that

of section 3, the following axpressions for the approximate bounds for the

shear modulus are found (see appendix A)

* Gm
G -= W) (4.9)

1 + (1 -'7) y- c

2 = Gm [1 + (' -1) y6)c (4.10)

in which

Gm

and y. and y(6 are defined by equations (A-28) and (A-31) in appendix A.

So according to (2.44)

G, G S G2

As for the bulk modulus the results can be easily generalized to the

case of different kinds of particles. Using the following notation:



-22-

(I) th
G~ shear modulus of i kind of particles

(i)
i Gm

i=k

) = C = L..C 1i=1

where k as before, is the number of different kinds of particles, equations

(4.9) and (4,10) are now replaced by,

i=k

G = Gm 70 (0) (4.11)
i=1 1+(1 - ýi) Y3L(i) ci

;ti (E)
G2 = Gm + i " 1) Y,(i) ci (4.12)

(a) (e)
The y1 (i) and y1 (1) are determined from (A-28) and (A-31) for the values

G(i) )
Sand " p . The value of P is not affected and is as given above.

The results for the shear modulus are much more complicated than

the simple expression for the bulk modulus obtained in section 3. Whenever

the bounds for the shear modulus are close together a formula which gives

values which lie between them can be regarded as a good approximation. A

simple formula of this kind is derived in appendix B. The result is:

15 (1 - vm)l -1) c
_ + (4.13)Gm Gm

GM~G 7I )m+2( m p p )c
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When there are k different kinds of particles

()
Si-=k=1+ 1.5(1 - ))m) G M

Gm11()

r,-5 V+2(4 -5 Y) "P -2(4-5Vm) 1 9 L .1)c
Gm _Gm

(4.14)

It is shown in appendix B that

S(4.15)

In view of the numerical calculations and comparison with experiments

which will be given in the next section it is necessary to determine what bounds

on Young' s modulus are given by the bounds on the shear modulus. It is easily

proved that an upper or lower bound on the shear modulus givez the corresponding

bound for Young ' s modulus. Assuming that G. and G. are lower and upper

bounds, i.e.

G2 > G1 •.6

Then

9KG 1

=3 K+G 1

E2 = 9KG23 K+Gz

for the bounds for K coincide. Then,
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El. _ >

EL 1+ 3K

G2

from inequaliiy (4.16). So

E 2 .> E, (4.17)

It is easily proved, in a similar way, from the expression of Poisson' s

ratio by the bulk and shear moduli, that the upper bound to the shear modulus

carrSspo(ads to a lower bound on Poisson' s ratio and vice versa.

5. .1XPRESSIONS FOR THE MODULI FOR VERY SMALL AND VERY LARGE

CONCENTRATIONS

A small concentration formula for a modulus of a heterogeneous

material is one that is valid when squares and higher powers of the volume

concentration of the particles can be neglected. Thus for very small c

K +
- = 1 + ac (5.1)Km

1 + Pc (5.2)

Gm

The numbers a and P may be interpreted as the slopes of the curves

"modulus-cancentration" at c = 0.

Similarly large concentration formulae can be defined by

S- 1 + a ' C(5.3)Kp
1=I+e• (5.4)

Gp
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in which

ci = 1 -c (5.5)

and c is very close to unity.

The value of a is easily found from (3.20) when the term containing

c, in the denominator, is neglected. The following expression is obtained.

- - m c (5.6)
Km 2(1- 2Vm)+(l+ ))m) K

For the shear modulus equations (A-2" 3 and (A-31) have to be solved

for the case where c is very small. The upper and lower bound

expressions for small concentration are then found from (A-35) and (A-36).

It is found that both expressions are the same and reduce to:
i 5(1- Jm) (1 G..p

1 c (5.7)
Gm 7u5pm+2-(4'5\m)

Thus the upper and lower bound have the same slope at c = 0. Expressions

(5.5) and (5.7) have already been given, in the same form by Hashin (1958) and

in another form by Eshelby (1957).

The same procedure can be used for very large concentrations. The

results are:

1KI [ 2(1 - 2m+(1+Ym) KL m
K- =1- _Kn c' (5.8)
"Ip 3 (1 \m)



1

-26-

GG1 ( 7- )[ 5Vm+2 (4 -5Vm) ]
= 1 -c ' (5 .9 )Gp 15 (1 - VM)

Again the expressins for the shear modulus are the same; so the upper and

lower bound have the same slope also at c = 1.

It is worthwhile to note that there is a simple relation between a and

a' defined in (5.1), (5.3) and P and •' defined in (5.2) and (5.4). From (5.6)

and (5.8)

Ca' =11- KP ( Kpm" (5.10)

From (5.7) and (5.9)

G Gp

Formulae for Young' s moddlus for small and large concentration can

now be easily derived. The relation between Young' s modulus E and the bulk

and shear modulus is given by:

9KGE = K+G (5.12)

Introducing (5.1) and (5.2) into (5.12) and linearizing with respect to c gives

E* 3 ý= P+Gm a- 1 + c (5.13)

Em 3 Km+ Gm

Similarly Lfr ilarge concentration, using (5.3) and (5.4),
E~ e _ K p .8 ' + G p a ' ,

- 1 + c (5.14)
Ep 3 Kp + Gp

The quantities a, al • and P3' are given in (5.6) -(5.9).
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6. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The theoretical results obtained above will now be used for a

numerical comparison with experimental measurements.

A suitable example is given by Tungsten Carbide-Cobalt alloys (WC-Co)

the micro-structure and mechanical behavior of which have been extensively

studied. The most recent experimental work on this alloy is given in papers

by Gurland (1959) and Nishimatsu and Gurland (1959).

The alloy prepared consisted of WC particles imbedded in a matrix of

Co. The experimental results of chief interest for the present work are

measurements of Young's modulus of the alloy for varying volume concentrations

of one phase relative to the other. These results are given in Table No. 1.

Another quantity of interest is the contiguity which is defined as the average

fraction of surface area shared by a grain of WC with all neighboring grains

of the same phase. It has been assumed in the theoretical analysis that the

contiguity is zero for all concentrations. This can clearly not be expected to

hold for an actual alloy. Table No. 1 contains the measured contiguities. The

volume concentration c refers to the WC phase.

The values of the contiguities show that there is a definite preference

for the Co phase to be classified as the matrix. This is also shown by

photographs of the microstructure of the alloy, at different concentrations,

which are given in the above cited papers.

In accordance with the preceding analysis the moduli of the WC will

be given the subscript p and those of the Co the subscript m. Then in the

present case

Em =30x106 psi Ep = 102x 106 psi

I) m = 0.30 Vp = 0.22

41~
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Using the formulae

E (6.1)
3(1 - 2(V)

G E (-.' (6.2)

the values of the bulk and shear moduli for the two phases are:

Km = 25.0x 106 psi Kp = 60.7x 106 psi

Gm = 11.5 x 106 psi Gp = 41.8 x 106 psi

The variation with volume concentration of the bulk modulus K*, of

the bounds for the shear modulus G1 and G* and of GV, have been

determined by the method given in the theoretical part below. Young' s

modulus and Poisson' s ratio have then been calculated from the expressbns:

E = 9KG (6.3)
3K+G

S3K - 2G (6.4)
2 (3K+G)

In (6.3) and (6.4), Ke given by (3.20) is used for K. The bounds on E*

and Vare obtained when introducing the bounds G• and G2 for G.

The quantities E and , which are obtained when using G (given by

(4.13)) for G, may be regarded as approximate values for the Young' s

modulus and the Poissont s ratio of the heterogeneous material, whenever

the bounds are close. The results are given in Table No. 2 below in form

of ratios to the matrix moduli.
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Figure 4 shows the calculated variation of the bul- modulus of the

alloy. Figure 5 gives the bounds for the shear modulus and the variation

of G , Fig. 6 - the bounds for Poisson' s ratio and ), Fig. 7 - the

bounds for Young' s modulus and EV. In the variations of the moduli

results of formulae for small and large concentration, given in Section 5

are shown as straight lines tangent to the curves at concentrations 0 and

1.0.

It appears from the figures that the bounds are quite close together

and are themselves good approximations to the values of the moduli. The

experimental results given in Table 1 are plotted in Fig. 7. This shows

that the experimental points closely follow the curves predicted by theory.

7. DISCUSSION AND CONCLUSIONS

It has been shown that approximations to Iunds for the elastic

moduli of composite materials can be determined by use of the variational

theorems of the theory of elasticity. For a specific example of an alloy for

which experimental data are available it was found that the theoretical

results are close to those found by experiment.

The mathematical expressions for the bounds for the shear modulus

depend in a rather complex manner on the ratio between the shear moduli

of the two materials and their Poisson' s ratios. It is therefore difficult to

give a general criterion for the closeness of the bounds.

A possible procedure, which is applicable to specific cases, is the

following- The quantity A given by,

G -1

IG



6
I0 psi K*

K p 60.7 x 106 psio
60.0 1

50.0 -

40.0-

30.0-

20.0

SMALL CONCENTRATION FORMULA------

10 .0 L A R G E ,,.,,

Si Ii

0.2 0.4 0.6 0.8 1.0

FIG. 4 'VARIATION OF BULK MODULUS WITH
CONCENTRATION



6.
10 PSL G*

0Gp 41.8 x 106 psL

40.0-

SMALL CONCENTRATION- - - -

LARGE

30.0-

G* G* •

20.0-

10.0 - Gm =11.5 x 106psi,

I I I
0.2 OA 0.6 0.8 1.0 c

FIG. 5 APPROXIMATE BOUNDS FOR SHEAR MODULUS
AND "



.4 -/

7/ 33

01

0FIG. 6 APPRXIMATE BONSFORPOSNS



10
6 psL E*

Ep 102 x 106PSL

100II I I

80 -

/I

60-

EXPERIMENTAL RESULT-REF. I? -0
SMALL CONCENTRATION FORMULA----
LARGE * '-

I •

0.2 0.4 0.6 0.8 1.0 c

FIG. 7 APPROXIMATE BOUNDS FOR YOUNG'S MODULUS
AND E*



-30-

is evaluated numerically at a concentration of 50 per cent. This will give

a good estimate of the maximum difference between the bounds. Whenever

A is small enough, G given by (4.13) can be used as the shear modulus

of the heterogeneous material.

It is to be expected that whenever the difference in moduli between

particle and matrix material iz not too large, the bounds will be close

together. It should be noted that for the WC-Co alloy the ratio "7 between

the shear moduli was 3.62 which is certainly not small. The bounds were

nevertheless close together. It is consequently believed that the simple

expression G5 can be uced with good accuracy for many practical cases.

A different situation may arise for such extreme cases as rigid particles

or empty cavities. This is further discussed below.

An important property of the approximate bounds should be emphasized.

At both extremities of the concentration range, c = 0 and c = 1 , the slope is

the same for both the upper and lower bounds for any elastic modulus of the

heterogeneous material. This provides some additional foundation to small

concentration theory and introduces large concentration formulae which, it is

believed, are of the same order of accuracy as those for small concentration.

Some consequences of a basic assumption made in this work should be

pointed out. It has been assumed, that at any concentration, a particle can

always be surrounded by a surface which lies wholly in the matrix. In other

words, the matrix always remains connected. A possible geometrical

configuration of such a material at high concentration is shown in Fig. 8a.

Another possibility is a heterogeneous material which is an

agglomeration of grains of two or more different materials. A concentration

of 100 per cent is reached when all grains are replaced by grains of one



(ci) (b)

FIG. 8 STRUCTURE OF MATERIAL AT HIGH CONCENTRATION
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material. The geometrical configuration of such a material at high

concentration is shown in Fig. 8b. In this second case there is no

preference of one material over the other. The expressions for the moduli

have to be invariant for replacement of one material by another and of c

by 1-c.

The analysis given in this paper applies only to the first case and

it should be expected that for two such materials, composed of the same

constituents, the difference in moduli would increase with increasing volume

concentration. This is illuminated by the fact that while small concentration

formulae for these two materials are the same, the large concentration

formulae are not.

The two materials described should be regarded as extreme

theoretical cases. The structure of an actual heterogeneous material will

in all probability be somewhere between the two.

The theory developed in this work may be easily applied to the special

cases of a body containing empty cavities or a body containing rigid particles.

In the first case

Kp = 0 Gp 0

and in the second

Kp--3r cO Gp O
p p

Equations (A-28) and (A-31) are greatly simplified in these two cases and the

bounds can be easily expressed in closed form. Numerical calculations show

that the bounds so obtained are further apart then for the alloy treated in

this work.
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The case of cavities is important for the study of porous materials.

The solution for rigid particles can by mathematical analogy be applied to

the rroblem of the viscosity of a suspension. As there is complete

mathematical analogy between the theory of incompressible elastic media

and the theory of Stokes flow (viscous flow when neglecting inertia terms in

the Navier-Stokes equations), the results for the shear modulus of an

incompressible elastic body containLng rigid particles will hold for the

coefficient of visco'3ity of a viscous fluid in slow motion, containing rigid

particles. However for both cavities and rigid particles a special difficulty

appears - the range of volume concentration will not extend to 100 per cent.

When the skeleton of a porous material breaks down the volume of solid oi

which this skeleton is composed is not negligible in comparison to the volume

of the voids. Also the flow of a suspension will cease, i.e. - the coefficient

of viscosity becomes infinite, at a concentration of 50 per cent -60 per cent

of partick, s.

It seems that the method given in this work cannot be applied without

modification to these extreme cases.



-33-

APPENDIX A

PROBLEM OF SHEARED COMPOSITE SPHERE

AND BOUNDS FOR SHEAR MODULUS

In the following a solution to the boundary value problems, set up in

section 4, will be constructed.

General solutions for the elastic sphere and the elastic spherical

shell havc been given by Lord Kelvin (Thomson) and Tait (1879), and Lure

(1953) for the general case and by Sternberg, Eubanks and Sadowsky (1957) for

the axisymmetric case. It is in principle possible to construct solutions for the

spherical inclusion and for the spherical shell, leaving enough arbitrary constants

to fit the boundary conditions.

The first two general solutions are very difficult to use owing to %;ie

complexity of the general solution for the spherical shell. The axisymmetric

solution is more explicit and it can be applied to the present problem by

superposition of axisymmetric tension and compression at right angles. A

simpler method of solution will be found by proceeding in a less straightforward

way.

The problem of a spherical inclusion in an infinite elastic medium, the

moduli of which are different from those of the inclusion, when the stress at

infinity is uniform (or the displacements are linear) may be solved in a

convenient way by application of Kelvin' s general solution of the problem of

an elastic sphere [ (Love) pp. 265-270].

In the case of pure shear in the 1, 2 directions it is found for the region

exterior to the inclusion that displacements and accordingly stresses, may be

expressed in terms of a solid spherical harmonic of negative integral degree

-3,

I
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xx (A-1)
'•-3) rs

and its derivatives.

Love (pp. 249-251) has given three special solutions to the field

equations of elasticity and it can be shown that the solution of the problem just

mentioned may also be found by superposing Love's w and 0 solutions.

These are in vector form:

Type w
---b = 2 -

u =r gradwn +(nwr
(A-2)

nn =-2 nX+(3n+1)G
(n + 3) X + (n + 5) G

Type

= grad On (A-3)

For the infinite medium in pure shear the solution can be constructed

by putting

W n On +( - 3)

In the problem given by equations (4.1) -(4.8) the exterior region is a finite

spherical shell. It is reasoiable to expect that the solution can be constructed

by using also the solid harmonic of positive integral degree associated with

"4J(-3)-

If 'Pn is a solid harmonic of positive integral degree n then

"Y-Rn-1 - %nr2n+l
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is a solid harmonic of integral degree -n - 1 . [Compare e.g. MacRobert

(1948) p. 74.] So in this case

kP2 = xi x2  (A-4)

The elastic displacement in the spherical shell can now be written as

follows,

-(m) =- 'T(1) + -32)+ ) (3 ) + -5)

u =Ai+ 2 u I+Aj',4 (A-5

where,

= grad (x, xj) (A-6)

•()=grad (x •(A-7)
Srs

u-3 - r2 grad (x1 x 2)+C 4 m) x1 x2 i? (A-B)

a r 2 grad (XX 2 ) + (m)t F (A-9)= " r " (-3) rs

According to (A-2)

(in) 2 Am + 7 Gm
2  =-2 (A-10)5Lm + 7 Gm

(m) Um + 8 Gm (A-li)
"(-3) Gm

Similarly for the interior of the inclusion

"( = ,--(1) + B--3) (A-12)

2  = B =0 (A-13)

I1
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The last equation is derived from the fact that u(p) vanishes for r = 0.

Zo ( )e 2ntr)or rAgi4n

g r gad (x, xz) + x1 xi2 P_

2X2p + 7 Gp
(p) 2 5 7G (A-15)

a2 5 X P+ 7 G

Sth,...lo . expressions for thp stress vectors on a spherical

surface will be needed. These may be determined by diffcrentiation of the

displacements and are given for the special type solutions in Love

(pp. 250-251). Introducing the nondimensional. constants

A, = At

A2 = X2
a.

A3 = a A3

(A-16)

BA = BI

B3 = a B

and using the formula

- 2V

G i -2V

where V is Poisson' s ratio - the stress vectors on a sphere of radius r

where a i r • b are given by the following expressions:
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7+2V4m I A+ x2

r I -2V i

+ A20 A3 - 12 Al 2 (A-17)
7-4L 1-2V)M~d r 2

T(2) = 2Gm A, -. 4A.2 + AB + I A x1
r 17- 42• 1-2M

[2A2  + 5VMA- 12 2a (A-18)20 A 2 7-2-4 A3 1 -22X 
1 

AX4 i 21

A 20 A , - 2J 7+ r2 5 (A-19)
r L i j.-

= r 7-4V)m A 1-2Vm . r

For the interior of the inclusion 0 • r -e a

4P) + 7+2V 5 X- 2?

B13] x. - 2~ B, 2 Z3  (A-20)
r p 7 4V " r jp P

The remaining components are easily written down by analogy with (A-18) -

(A-19)o

The expressions for the displacements are: For the shell

a r<b
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(mn)
u• = (Al +A 2 +A 3 +A.)x 2 +

1 7_-10 Vm x3 2 • x~x

+ '5A2 - -"I 3m + - 3  A. , 2 (A-21)

u(n) = (A, +A 2 +A 3 +A,) x1 +

S-5A 2  A x1 x,,2 (A-22)
7.4)m 1 -2\m r2

inn -

(i) 7-102m 3 \ X1 x 2 X3u _ 5- A2-2 - A3 + A,) 2  (A-23)7 7- 4 Vm 1 2 2Vm r2

For the interior of the inclusion, 0 4 r • a:

up =(B +B%) 2 -2 4-10Vp B, (A-24)
7-4Vp r

and the other components follow by analogy.

The two boundary value problems for the elastic composite sphere

may now be easily solved. The expressions given for the displacements

already satisfy equations (4.1), (4.2). Equation (4.3) is satisfied by the

components of -u(P) given by (A-24). Setting (A-21) equal to (A-24) in

accordance with (4.4), (A-17) equal to (A-20) in accordance with (4.5) and
equating to zero coefficients of x2 and x x2  - 4 linear equations for the

six unknown coefficients A1 , A2 , A3, Aq, B , B3 are obtained.

It should be noted that equating of other components of displacement

and stress vectors does not give new equations. This follows from the iorm.

of the expressions and may easily be understood by the symmetry of the
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problem with regard to the bisector plane drawn between the x, xg and

x2 X3 planes.

Two additional equations are obtained for each of the problems, either

from (4.6) and (A-17) or from (4.8) and (A-21). The problem is thus reduced

to the solution of six linear equations with six unknowns.

For the stress problem the matrix of coefficients is as follows:

(1) 1 1 1 -1 -1 0

(2) 0 -5 -2 7-s4n 3o0 2 7-10p 07 - 4 V•m I - 2 )m 7.-4,--,)p

(3) 1 -4 U+-- L/ P+ 0m _ •_/7-4 1)I 1 - 2' 7-4V)p

(3) 1 7+0510 + 5 m 6 0 7+-5v0

___ 7+ +5v"

() 0 10f 6 0 0 0

7 - m 1 - 6 1 0 0 0

(6) 4f 7-4m -i -2m o0 2 GM

(A-25)
where

Gp07 ý L (A-26)

and j has been defined by (3.1) and (3.2).
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For the displacement problem only rows (5) and (6) in (A-25) undergo

a change. These are now:

I. Al _________ A;( (e)B. Bt B-3

(') 0 -5j5 -2 7 - 'Om 3('•) o B,• "•7-4Vm T .r•= 1 -2 VM

I o o

(6) 1 f2 3f7L 0o 0 2

(A-27)

The system of equations (A-25) may be reduced after various

rearrangements and application of rules for evaluation of determinants to

a system of two equations in two unknowns:

1 1-~ 5 4+ (7+5Vn)l-YJ 0

(A-28)

in which,

.VS) GU 21
yt B 5(7 -'4Vp) BVI

2(G _ _ _ _ _ 
( A -2 9 )

2,o- _ýT 3-o '

4(7- lO01) p) (1 + 5 p)
/ 35 (1 - m (A-30)i--

I
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The system of equat i=s associated with (A-27) may be reduced in a similar

way to:

~~+ Y{2 infi)
(A-31)

7 -_ I V (1 2(4+ 2 /1 - :E
~1 15(1 v)~ 1  k)-M) (1 l7)fj+Ya 21i ~1
15• " (+ 51- Vm) 1l("-,Vn.,) (i0) +(

in which

YE = 2 [B3ý0+ 21 ,,()] A-32)
7 L - 5( 

(A

= 2 B(E)

and 15V is given by (A-30).

The quantities S n 4E, ) are best dctermined in this case from

equations (2.14) (2.13) using (A-21) and its analogues, and (A-24) and its

analogues. The unknown constants B 1, B5 are determined from (A-28)

and (A-29) for the stress approach and from (A-31) and (A-32) for the

displacement approach. The 4i°) and t4o) appearing in (2.14) are given

by (4.6) and (4.8) respectively. (Because of the theorems that when an

elastic body is loaded by constant stress this stress system is found at

every point in it; when deformed by linear surface displacements this

displacement field is found throughout it.) Carrying out the integration the

following expressions are found:
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= v 2.(o) ~(A-33)
2 Gm

2C) ( -1 ) (A-34)

Then from (2.45) and (2.46)

• ~Gmi

Gm (A-35)1i+(I - '/) y(• c

(F)G =Gm [1I+ ( y,• 1y:c] (A-36)a -

where (2.47) and (2.22) have been used.
--(-) y(

The actual expressions for and y) are clumsy and it seems

best to determine them numerically when numerical values of Km, Gm

and Kp, Gp are given. It should be noted that y( and y() are functions

of f i.e. of the volume concentraLion c.
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APPENDIX B

APPROXIMATE EXPRESSION FOR SHEAR MODULUS

The expression (4.13) for 5* can be derived in the following way.

The system of equations (A-28) is written in the form

(0) () Ul ka (3),
a11 y, +a 1 2  y2  =0

(B-i)
(a~) (a)~ 4T)=

And analogously for system (A-37),

(C) (W) (0) (E)

aLL yL + a1 2 y 2 =0
(B -2)

(C-) (6) (6) (e)
a 22 yL + a2  y2 y 1

Then,

a)21 -7

a1 2

(W 2 (13B4)
l 12

y1  ~(E) E(e@) a11 a,.

a1 2

The quantities yand ) are defined by,

(a) 1
a. 1

-(e) ___

Y = (B -6)
a.,
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ar: If Yand A(E) in equations (4.9) and (4.10) (A-.35) and (A-36)in Appendix are replacd by and te resutig exressions
are:

Gm

Introducing the coefficients a. and a(Z)1 -fro.m (A-28) and (A-31) it

turns out that,

G, = G2  (cB-9)

where G6* is given by equation (4.13).

It can be proved that for all values of c,

2he (3-10)

The proof is somewhat tedious and only its outline will be given here.

This is as follows:

(a) The quantities y(T) and. y) are always positive.

From the defin.it.on of O U USU,, ) it follows that when the

moduli of an inclusion are larger than those of the medium &" U(G is negative

and 6 U(E) is positive. When the moduli of an inclusion are smaller than those

of the medium the convers. is true. Applying this to equations (A-33) and

(A-34), statement (a) follows.
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(b) The following relations hold for the coefficients a,, and a.j

W® (6)

(a) (E)

a2 2 = a 2 2 = a22
(B3 -11

(E) (T)
a.1  - a., = (1 -'7 ) c

a., > 0 for 7>1

a. 1  0 fo -y 1I

(a-)
a2 1 >0
a., > 0 (B ,-12)

a2 2 > 0

22>0(E)

a21 >0 J
(c) The ..... ttties y1  and y1 ) satisfy the following inequalities:

a >1 for 7. (3-13)

y- y() for ('B1 (-14)

This follows from (B-3) and (B-4) and the inequalities given in (b).
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(d) The approximate bounds satisfy the necessary condition:

This follows from (A-35), (A-36), (B-3), (B-4), (B°12), (B-13) and

(B-14).

(e) The quantities d and G are related to G+ and G* by the following

inequalities:

G - (B-16)

2 G2  (B3-17)

This follows by introducing (B- 5) and (B-6) into (B-7) and (B-8),

(B-3) and (B-4) into (A-35) and (A-36) and then comparing G. with GUj

and G* with G•, using (B -12).

So according to (B-16), (B-17) and (B-9)- (B-10) is true.

The proof remains essentially unchanged for the case when the

particles are of different kinds.

Equation (413) may be rearranged into a symmetric form analogous

to (3.21),

(g + G
G KU-

g + G- I 1 -

In which
7 -5\,'m

g = '2 (4 - 5 VM/

Note also that (4.13) satisfies the slope conditions (5.7) and (5.9),

as it should.

I-
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Table 1

Experimental results for WC-Co alloy (Ref. 17)

E(10 6 psi) contiguity

0.0 30

0.10 33 0.16

0.35 46 - 48 0.29

0.50 54 - 55 0.42

0.63 61.5 0.47

0.78 72.5 0.54

0.90 88 0.66

1.00 102
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Table 2
Theoretical results for moduli of WC-Co alloy

Km Gm Gm Gm Em Em Em

0.00 1 1 1 1 1 1 1

0.20 1.167 1.227 1.262 1.287 1.218 1.245 1.269

0.40 1.373 1.516 1.600 1.665 1.495 1.561 1.619

0.50 1.495 1.711 1.807 1.887 1.678 1.753 1.823

0.60 1.633 1.953 2.049 2.133 1.904 1.976 2.050

0.80 1.970 2.627 2.678 2.733 2.516 2.549 2.599

0.90 2.181 3.080 3.098 3.120 2.919 2.932 2.951

1.00 2.420 3.622 3.622 3 3.400 3.400 3.400

0.00 0.30 0.30 0.30

0.20 0.291 01287 0.282

0.40 0.282 0.273 0.264

0.50 0.275 0.265 0.256

0.60 0.267 0.258 0.249

0. 80, 0.245 0.241 0.236

0.90 0.232 0.230 0.229

1.00 0.22 0.22 0.22
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